农业基础科学论文_基于超像素暗通道和改进导向
文章摘要:针对传统暗通道先验算法运算速度慢以及在农业图像中适用性差的问题,提出了一种基于超像素级暗通道先验和自适应容差机制改进导向滤波算法的图像去雾方法。首先利用超像素分割获得具有一致颜色和亮度属性的超像素块并估计不规则区域块的透射率,将导向滤波算法引入并利用自适应平滑参数细化透射率得到更为细致的边缘信息,加入自适应容差机制,使其能够根据图像明亮区域的变化和雾霾的浓度对透射率进行自适应补偿修正,得到最优透射率。最后对局部大气光估计和适应性调整,根据大气散射模型得到质量更高的复原图像。试验以6幅不同浓度雾影响的农业场景图像为例,与传统基于暗通道先验的去雾算法相比,采用主观和客观评价指标对去雾结果评价,本文方法恢复的图像色彩更真实,细节更丰富,并且在一定像素范围内具有较高的实时性,可为田间遥感图像后期的拼接与农情信息解析提供研究基础。
文章关键词:
论文分类号:S126;TP391.41